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Abstract
To be able to utilise geographical data for analysis, one should know something

about the quality of the data. In present geographical data standardisation proposals
(SDTS, CEN TC287), several aspects of geographical data quality have been
described, such as lineage (data collection and processing history), spatial accuracy,
attribute accuracy, completeness, logical consistency and currency.

Methods for quantitative assessments of different aspects of spatial accuracy for
data sets of linear geographical features, such as shape fidelity and positional
accuracy are described. For these assessments, independent data sets of better (and
preferrably known) accuracy will have to be used. In order to be able to do
automatic assessments, data set completeness must be taken into consideration.

The method has been applied for assessing the spatial accuracy for some themes
of the Digital Chart of the World (DCW) (scale of original maps (ONCs):
1:1000000), using the Norwegian mapping authority’s national N250 map series
(scale 1:250000)**  as a reference data set.
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1 Introduction
The availability of quality information is a prerequisite for the utilisation of

geographical data sets.

                                                       
*  This work has been partially funded by the Norwegian Research Council under the Geographical Information

Technology programme.

**  Many thanks to the Norwegian mapping authority for giving us access to excerpts of the digital N250-data set for
these purposes.



Traditional geographical maps have conveyed quality information indirectly through
the quality constraints and mapping rules that applies to the relevant map series and
implicitly through the (presentation) scale of the maps. The professional map users have
hopefully been aware of the many aspects of traditional map quality, while most casual
map users probably have used the scale of the map as the only quality indicator.

With the advent of digital geographical information, presentation scale as such is no
longer a useful measure of geographical data quality since digital geographical
information in theory can be presented at any scale. The availability of digital
geographical data and geographical information systems (GIS) also gives new
opportunities for easy combination of geographical data sets of any scale. The results of
analysis on combinations of data sets depend on the quality of all the participating data
sets.

In order to be able to determine the quality of the results of geographical data
analysis, it is imperative that quality measures are available for all the involved data sets.

The inclusion of quality measures for digital geographical data sets has been impeded
by the lack of standards. There has been some research activity on spatial data quality,
and some significant contributions include: Chrisman 1984, Goodchild and Gopal 1991
(book of articles), SDTS 1990 (US spatial data transfer standard).

The research presented in this article is a part of the ongoing project* «Issues of Error,
Quality, and Integrity of Digital Geographical Data: The Case of the Digital Chart of the
World (DCW)» (Langaas and Tveite 1994). Until now, we have been investigating
methods for quality assessments, and are now starting to apply the methods on our data
sets (DCW and N250).

The rest of the paper is structured as follows. In chapter 2, linear geographical
phenomena are discussed. In chapter 3, different ways of measuring geographical line
quality are presented, and our method for quantitative assessment of geographical line
quality on the basis of data of higher geometric accuracy is introduced. Chapter 4 rounds
it all up with conclusions and an outline of future work.

2 Linear geographical phenomena
The geometric line abstraction can be used to represent many geographical

phenomena. Some examples:

• Roads and railways

• Administrative (state, municipality) and economical (property) borders

• Utility lines (powerlines, telephone lines, water and sewage tubes)

• Rivers and streams

• Natural boundaries (e.g. vegetation, soil)

• Shorelines

                                                       
*  The project presently has a WWW page: URL:http://ilm425.nlh.no/gis/dcw/dcw.html



Some of these phenomena are nature given and some are human «constructions»
(constrained by nature).

There are many ways of providing quality measures for linear features. The choice of
a quality measure depends to some extent on the type of linear feature we are
considering.

2.1 «Scale» and fractal behaviour

The «scale» of a line data set can to a certain extent be determined on the basis of the
geometry of the line alone. Geometric accuracy is in many cases closely related to
«scale». Good indications on scale are:

• The number of significant digits in the representation of points in the data set is the
crudest measure of «scale» / spatial accuracy of a data set. This is not a useful
measure when the original data have been manipulated (e.g. transformed to a new
projection), as most software do not consider accuracy in their calculations.

• Distance between neighbouring points. The intended scale of the data set can
normally be derived from the lowest distance between neighbouring points. This is
not true if the data set has been manipulated, for instance by inserting new points
on the lines using some sort of interpolation method.

• Frequency of curvature change. For curving phenomena which change curvature at
a higher frequency than can be captured using the assumed geometric accuracy in
the data set of interest, the maximum rate of curvature change is a good indication
of the «scale» of the data set. Such phenomena are phenomena that show fractal
behaviour (Barnsley 1988) up to larger scales than what can be expected by the
data set under consideration. Most features in nature seem to exhibit fractal
behaviour over a large spectrum of scales. Examples of such phenomena are:
rivers/streams, roads, shorelines and other natural boundaries. The fractal
behaviour of natural phenomena, and to a certain extent also human-made linear
objects, is often influenced by the soil/geology/geomorphology of the area.

2.1.1 Fractal behaviour of infrastructure

When one gets to a large enough scale, infrastructure will cease to exhibit fractal
behaviour. A road will normally not change curvature more frequently than each 100
meter (1000 meters for a modern motorway, while perhaps 10-20 meters for a small
older road). The same applies to railways, powerlines, telephone lines and other utilities.
When you come to a certain point, they will cease to exhibit fractal behaviour. The
fractal behaviour of infrastructure is, in addition to cultural/historical issues, also
influenced by the geomorphology of the area.

3 Methods for assessing the quality of lines
In the following sections, we will be presenting and discussing methods for calculating

and quantifying the geometric accuracy of lines.



For our assessments, we assume that we have two independent data sets, X and Q,
covering the same line theme and the same area (and collected at about the same point in
time). One of the data sets, Q, should have a known geometric accuracy. The geometric
accuracy of Q should be better (preferrably at least an order of magnitude) than the
expected geometric accuracy of the data set X. It is also expected that the completeness
and consistency of data set Q is significantly better than that of data set X.

Lines
The geometric accuracy of a line can be decomposed into two components:

• Positional point accuracy: Positional accuracy can easily be given for well defined
points on the line (e.g. the end-points). For the rest of the line, it is difficult to say
anything about positional accuracy and to quantify it.

• Shape fidelity: To be able to say something about the accuracy of a line, it is useful
to talk about its shape fidelity as compared to another line. The shape fidelity
should indicate to what extent the curvature of two lines are similar.

The type of spatial «errors» that can occur for linear data sets could also be classified
into categories. E.g.:

• Scale-dependent errors (generalisation). These are errors that result from reducing
the sampling frequency when collecting data on the linear phenomena of interest.

• Generalisation/sampling: A line-representation that has been generated by
sampling a line of high geometric accuracy represents a special case. Each
point of the line is very accurately specified, but between the represented
points, there can be large deviations between the interpolated line and the
original position of the linear feature. This is closely related to scale-
dependent errors.

• Achievable accuracy of fuzzy lines. The position of most linear phenomena get
fuzzy as the scale gets larger, and it is generally impossible to give them an exact
location. River centrelines and soil and vegetation boundaries are good examples
of fuzzy natural phenomena, but also human constructions can be difficult to
measure with extremely high accuracy (it is difficult to determine the centreline of
a road with millimetre accuracy).

• «Random» errors. Errors that result from erroneous sampling and data processing.

It would be desirable to be able to separate these when describing the spatial accuracy
of the geometric representations of linear geographical features.

3.1 Point measures

It is straightforward to calculate the geometric accuracy of points. For single points
one can measure the deviation vector (e) of the point representation (P) as compared to
another representation of the same point with better (and known) geometric accuracy
(Q).



e = P - Q = (Px-Qx, Py-Qy, Pz-Qz) for 3D space

The absolute value of this deviation vector (|e|= e e ex y z
2 2 2+ +  for 3D space) is a

useful measure for further (standard) statistical calculations.
For multiple points one has to resort to statistical measures to determine quality

parameters. Standard deviation or variance can be used whenever the point-errors of the
data sets have no bias and can be considered normally distributed.

The mean error vector (spatial bias) is (Pi and Qi are corresponding points in the two
data sets):
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Both of these measures are acceptable quantifications of the spatial accuracy of
points.

3.1.1 End-points

Line end-points can be used to provide a simplified measure of the geometric
accuracy of the lines. End-points could be cross-roads and dead ends in a road network,
river meets and lakes in a river/watercourse system or joints and end-points in a tube
network.
If one is able to identify corresponding end-points in the reference data set and the data
set of unknown spatial accuracy, it will be straightforward to compute a statistical
measure of the geometric accuracy of the end-points using the formulas presented above.

Previous work on quantitative quality assessment on the DCW was performed using
40 evenly distributed cross-roads in the road and railroad network in the area covered by
ONC G18 (the south-west coast of USA.), and using 1:100000 scale topographical data
(US DLG) as reference data sets (1:24000 data were used for testing vertical accuracy).
This work is described in a DMA report (DMA 1990).

3.1.2 Intermediate points

As long as intermediate points are not well-defined features, the only way of finding
corresponding intermediate points is to search for the closest point on the other line. A
method for determining spatial accuracy of a line as compared to a line of better
accuracy could then be to traverse the line, and at regular intervals (spacing εε) along the
line take out sample points, and on the basis of each of these points do a search for the



closest point on the reference line. At each sample point, the distance vector, e, to the
closest point on the reference line is an indication of the spatial accuracy of the line at
that point, and an overall measure of line accuracy can be calculated statistically using e
as in the formulas presented above.

This method has to be applied for all lines that have corresponding lines in the
reference data set, arriving at an overall measure of the positional accuracy of the lines in
the data set.

The choice of spacing εε could be based on the spatial accuracy of the reference data
set. Since the lines we are interested in do not exhibit completely random behaviour, this
implies that the smaller εε that is chosen, the more strongly will the e‘s of neighbouring
point samples be correlated. To get an overall statistical measure for the data set, εε
should therefore be chosen so large that the e‘s of neighbouring points can be considered
not correlated (Cov(ei, ei+1) ≈ 0). εε could be chosen to be of a higher order of magnitude
than the accuracy of the reference data set. It could also be interesting to do several
calculations based on different εε‘s to give an assessment of the stability of the calculated
spatial accuracy.

To determine separate measures for the line end-points and the interior of the lines, a
transformation will have to be performed on each individual line prior to the traversal of
the line, in such a way that the end-points of the corresponding lines match exactly.

3.2 Calculating the geometric accuracy of a line using buffering

The method proposed below uses buffering of lines and subsequent overlay analysis to
give a quantitative assessment of the geometric accuracy of a line relative to another line
(of higher accuracy). The method should be iterative, because it will not be possible to
determine an optimal buffersize in advance (we do not yet know the spatial accuracy of
the line data set under consideration). The size of the first buffer can be determined on
the basis of the known spatial accuracy of the reference data (e.g. the standard deviation,
SD, if that is available). For each iteration, the size of the buffer could then be increased.
4-5 iteration will probably be sufficient, and the process should be terminated when the
results seem to stabilise.

Before starting the iterative process it is useful to do some statistical calculations on
the lines. The interesting measure at this point in the process is the total length of the
lines.

3.2.1 The iterative process:

For each buffersize bsi:
{ }bs i ni , ,2, , ...,∈ 1 3 (bsi  is the width of the buffer)

perform the following 3 steps:

First step - line buffering

Perform a buffer operation on each of the two lines, X and Q, using the buffer size bsi

(resulting in a buffer 2 x bsi wide). Call the resulting polygons for Xbsi and Qbsi.



Second step - overlay

Perform an overlay of the two polygons Xbsi and Qbsi, the result being a new polygon
data set: XQbsi.

Third step - statistics

Calculate statistics (total area, number of polygons, total perimeter, perimeter/area for
each polygon) on XQbsi for the following situations:

• areas outside Xbsi and outside Q bsi (A( Xbs Qbsi i∩ ))

• areas outside Xbsi and inside Qbsi (A( Xbs Qbsi i∩ ))

• areas inside Xbsi but outside Qbsi (A( Xbs Qbsi i ∩ ))

• areas inside Xbsi and inside Qbsi (A( Xbs Qbsi i∩ ))

3.2.2 Arriving at a measure for the geometric accuracy of lines

The statistics calculated in the above steps can be used to give measures of deviation
of the line X from the line Q.

Average displacement
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DE is the lower bound of the average displacement of a line relative to another line
(of greater accuracy in our case).

Oscillation
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Where #A(...) is the count of areas.
O is an indication of the oscillation of the lines X and Q relative to one another.
This measure is most useful for «randomly» oscillating phenomena, where it could be

used as an indication of bias (there would probably be a bias if the oscillation, O, is low
for randomly oscillating lines of different accuracy).

Oscillation could also be found directly using X and Q, by counting the number of
nodes introduced when overlaying the two line data sets.

O is also a measure of relative scale for «randomly» (that is random appearance at the
relevant scales) oscillating linear phenomena.



3.3 Calculating the geometric accuracy of line data sets

The buffering method for calculating the geometric accuracy of lines can also be
applied to line data sets. To apply the method on the data set level, all lines must exist in
both data sets (the completeness criterion). If there are lines that only are present in one
of the data sets, these will introduce errors in the calculations.

In conjunction with spatial accuracy assessments on real linear data sets, it is therefore
important that an assessment of the relative completeness of the data sets is made and
used as a correction in the method.

3.3.1 Calculating completeness for line data sets using buffering

Using an approximate measure of geometric accuracy of a data set (X), it is possible
to make an assessment of the completeness / number of miscodings of the X data set, as
compared to the Q data set. An approximate measure of the geometric accuracy can be
obtained by applying the method presented above on the complete data sets (ignoring the
lack of completeness measures).

The method outlined below use a combination of buffering, overlay and selection (and
thinning).

First step - buffer

Perform buffering on both line data sets, X and Q, using a buffer distance, BD, which
could be about twice as large as the geometric accuracy measure found for data set X
(for the line-polygon alternative presented below, a buffersize that is four times as large
as the geometric accuracy measure found for data set X should be used to obtain the
same statistical effect).

It is necessary to choose the buffer distance larger than the statistical measure of the
spatial accuracy (could be SD), since SD is a sort of weighted mean. When choosing a
buffer distance twice as large as the SD for both line data sets, we capture all errors
within 4SD’s of the reference line.

The result of this buffering is the data sets XB and QB.

Second step - overlay

Do two line-polygon overlays: Overlay X with QB and XB with Q, resulting in the
new mixed data sets XQB and XBQ.

Third step - statistics

Using XBQ, calculate the sum of the length of the lines outside XB and compare it to
the total length of lines in Q:

Completeness(X) = 100 1⋅ −
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A more «exact» measure can be obtained by using the identity of the lines that are not
in X, and calculate the length of the complete lines, as opposed to the part of the lines
that do not fall within the buffer.



Using XQB, calculate the sum of the length of the lines outside QB and compare it to
the total length of lines in X. This is a measure of the amount of miscodings in X as
compared to Q.

This can also be done in a more «exact» way using in the same method as described
above.

3.3.2 Ensuring completeness

To prepare for the spatial accuracy assessment to come, all miscoded lines in X and
all lines in Q that are not in X should be removed from the line data sets. The lines to be
removed can be found in XBQ and XQB, described above. The resulting data sets should
be used in the rest of the process.

3.3.3 Assessment of the spatial accuracy of line data sets

The process for calculating geometric accuracy of line data sets is exactly the same as
for individual lines. It is useful to start out with calculating the total length of the lines in
both coverages.

The (iterative) process is exactly as described for single lines above:

1. Line buffering

2. Overlay

3. Statistics

3.3.4 Arriving at a measure for the geometric accuracy of line data sets

The statistics calculated in the above steps can be used to give measures of the
deviation between the lines of the X and the Q data set.

A lower bound on average displacement for complete line data sets
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DE is a lower bound on the average displacement of a quality line data set relative to
a line data set of less accuracy. The choice of reference data set will influence DE. We
have chosen to use the data set with the smallest expected total line length as reference.

If the data sets operated on is the original data sets, as opposed to the completeness
adjusted data sets, the results must be corrected using the completeness measures
determined above, giving an approximate lower bound on average displacement for
incomplete line data sets.
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3.3.5 Oscillation
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Where #A(...) is the count of areas.
This is an indication of the oscillation of the lines X and Q relative to one another.
O is most useful for «randomly» oscillating phenomena, where it could be used as an

indication of bias (there would probably be a bias if the oscillation, O, is low for
randomly oscillating lines of different accuracy).

Oscillation could also be found directly using X and Q, by counting the number of
nodes introduced when overlaying the two line data sets.

4 What’s next?
In this paper we have outlined a method for quantitatively assessing the spatial accuracy
of the representation of geographical linear features. The method utilises the standard
GIS operations buffer and overlay to arrive at a polygon data set that can be analysed
using simple statistical measures (e.g. sum and count).
At the time of this writing, we are about to start our accuracy analysis of the DCW data
set using these methods. The results of these practical exercises will become available to
the public in the project report.
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